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Abstract

This paper describes the state-of-the art of a large-scale
project, aimed towards the development of personal service
robots for the elderly population. Taking care of elderly and
chronically ill people is one of the major challenges currently
faced by society. Needs range from increasing articulation to
assisting those with dementia and cognitive impairment. To
respond to this challenge, we have developed a first proto-
type robot. Using natural language, the robot can provide in-
formation related to activities of daily living obtained from
the Web. It also enables remote care-givers to establish a
“tele-presence” in people’s home, by relaying back video and
audio stream through the Next Generation Internet. The pa-
per describes this early prototype, and it lays out our research
agenda towards building service robots for the elderly.

1 The Problem
At the turn of the millennium, the number of elderly in need
of care is increasing dramatically. Today, more than 12.5%
of the US population is over 65 years in age. As the baby-
boomer generation approaches the retirement age, this num-
ber will increase significantly. By 2030, more than 15% of
the population will be 65 and over. According to informa-
tion summarized from the U.S. Bureau of Census, the pop-
ulation of people 85 and older is expected to increase 39.3
percent by the year 2000 and 33.2 percent between the years
2000 and 2010. Current living conditions for the major-
ity of elderly people are already alarmingly unsatisfactory,
and situation will worsen in the future. According to (US
Department of Health and Human Services 1999), nearly 9
percent of non-institutionalized persons 70 years of age and
over were unable to perform one or more activities of daily
living such as bathing, dressing, using the toilet, and getting
in and out of bed or chairs.

At the same time, the nation is facing an explosion of costs
in the health-care sector. Current nursing home costs range
between $30,000 and $60,000 annually. Over the last decade
along, costs have more than doubled (in adjusted dollars).
The dramatic increase of the elderly population along with
the explosion of costs pose extreme challenges to society.
The current practices of providing care for the elderly popu-
lation is already insufficient. Undoubtedly, this problem will
multiply over the next decade. Thus, as a society we need
to find alternative ways of providing care to the elderly and

chronically ill population. Such ways must not only lower
the costs. They must also increase the comfort of living, and
approach people with the level of dignity that our elderly
deserve.

Robotic technology, at the same time, is going through
major revolutions. Sparked by a dramatic increase of com-
putation per dollar, and by substantial decreases in the costs
of major sensor technologies (e.g., cameras), we are now
closer than ever to the goal of intelligent service robots
than can assist people in their daily living activities. In
the last few years, service robots were successfully fielded
in hospitals (King & Weiman 1990), museums (Burgardet
al. 1999), and office buildings/department stores (Endres,
Feiten, & Lawitzky 1998), where they perform janitorial ser-
vices, deliver, educate, or entertain (Schraft & Schmierer
1998). Robots have also bee developed for guiding blind
people (Lacey & Dawson-Howe 1998). Time is ripe to lever-
age this technology into the lives of elderly people, where
the need for personal assistance is larger than in any other
age group.

This paper described initial results obtained by CMU’s
“Nursebot project.” The goal of this project is the develop-
ment of personal robotic aids that serves five primary func-
tions:

� Cognitive prosthesis.A large fraction of the elderly pop-
ulation suffers from varying degrees of dementia. The
inability to remember can have severe consequences. For
example, subjects may forget to take medicine; they might
forget to see the bathroom, etc. When conditions become
too severe, patients need regular supervision in carrying
out their daily activities, which often means moving into
a nursing home. People also might use a robot for lesser
purposes, such as finding out what’s on TV. Reminding
is an important (and time-consuming) activity in a health-
care professional’s life.

� Safeguarding.As elderly people become physically and
cognitively impaired, the private home can pose substan-
tial risks. For example, accidents relating to falling can
have, if undetected by others, severe consequences (up
to a patient’s death). loss of stability is a leading prob-
lem for independently living elderly people. By reducing
such risks through systematic monitoring and safeguard-
ing, the move into dependent living (e.g., nursing home)



can be delayed.
� Systematic Data Collection. A key problem currently

faced in the health care sector is the inability to collect
data for people living in private homes. Such data include
statistics on medication (when did the person take what?),
daily living activities, and factors related to the predic-
tion of specific medical risks (blood sugar, leg diameter).
Assuming that the necessary mechanisms are in place to
guarantee the privacy of such information, such data can
be of tremendous value for professional care givers in
their diagnosis and selection fo treatment.

� Remote tele-medicine.In the US, home visits by health-
care professionals (e.g., doctors) are extremely rare, due
to the high costs involved. The idea of robotic tele-
presence is to use Internet technology to relay live video
and audio stream from the doctor’s office to the patient’s
living room, thereby enabling the doctor to establish a
tele-presence in the patient’s home. The ability to move
(and manipulate) provides an enhanced degree of flexi-
bility currently lacking in video-conferencing and other,
competing alternatives.

� Social interaction. Finally, the vast majority of indepen-
dently living elderly people is forced to live alone, and is
deprived of social interaction. Social engagement can sig-
nificantly delay the deterioration and health-related prob-
lems. While robots cannot replace humans, we seek to
understand the degree at which robots can augment hu-
mans, either by directly interacting with the person, or
by providing a communication interface between differ-
ent people that is more usable than current alternatives.

To accommodate these needs, we are currently developing
a first generation personal service robot specifically targeted
at people with mild forms of dementia and other physical
inabilities (e.g., low blood pressure). This paper describes
the current system design, along with initial results obtained
in a controlled experiment.

2 Hardware Design
The current prototype robot, calledFlo (in honor of Flo-
rence Nightingale) is shown in Figure 1. Flo is built on top
of a Nomad Scout differential drive mobile base, equipped
with 16 ultrasonic range finders. The custom-made robot
is equipped with a SICK PLS laser range finder, capable of
measuring distances at an angular resolution of one degree
and a spatial resolution of 5 cm, within a planar perceptual
field that covers a 180 degree range. Flo is also equipped
with two on-board PCs, connected to the Internet via a
2mbit/sec wireless Ethernet link manufactured by Breeze-
Com. A bright, touch-sensitive color display is mounted
conveniently at approximate eye height for for sitting peo-
ple. On top of that, FLO possesses an actuated face that
enables it to show different facial expressions by modify-
ing the angle of its mouth and that of its eyebrows. The
face is mounted on a 2D pan/tilt unit (by Directed Percep-
tion), capable of swiveling the face at high speeds. Addi-
tionally, the eyes are motorized, which enables them to sac-
cade when tracking a person’s face. Flo’s eyes are white-
balanced color CCD cameras with an approximate aperture

Figure 1: Side view of Flo, the robot. The robot is equipped
with a touch-sensitive display, a laser range finder, an array
of 16 sonar sensors, and two on-board PCs.

angle of 100 degrees. The cameras are connected to a pair of
frame grabbers and JPEG encoders for image processing and
high-bandwidth communication. Flo is also equipped with
a speaker system and a microphone, necessary for record-
ing and synthesizing speech and other acoustic signals (e.g.,
music). Flo’s battery lifetime is approximately 45 minutes.
The robot currently lacks a mechanism for connecting itself
to a battery charger, making it necessary that a human assists
the robot in operation.

3 Software
At the current point, Flo consists of four major software sub-
systems, each of which is designed with a specific goal in
mind for assisting the elderly.

3.1 Tele-Presence Interface
One of the most important goals of a robot assistant is not to
supplant communication between the users and other people
such as nurses and doctors, but to facilitate it. Rather than
replacing a nurse, Flo needs to allow real nurses to monitor
and interact with the user. Furthermore, while having family
and relatives visit can often be difficult, Flo can allow for
virtual visits using the tele-presence, in this way increasing
the user’s contact with the outside world at relatively little
effort.

The tele-presence interface consists of a camera and mi-
crophone on-board Flo, that transmit the video and audio
signal to a remote station. Both camera and microphone are
mounted inside Flo’s head, to provide as robot-centric a rep-
resentation as possible. The video feed is compressed into
a JPEG feed on board, and then both signals are transmitted



Figure 2: Flo interacts with a person.

to a local base-station over the wireless Ethernet, and then
to a remote station. At the remote station the JPEG is de-
compressed and synchronized with the audio before they are
played back on the remote computer’s screen and speakers.

At the moment, the wireless bandwidth does not support
bi-directional tele-presence, although the advent of high-
bandwidth wireless Ethernet promises to eliminate this prob-
lem. Currently, an audio signal can be transmitted from the
remote station to on-board the robot where it can be played
out the Flo’s speakers. Thus, it is possible to have a live
conversation with someone’s presence “embedded” in Flo.

In addition to the communication modes, the tele-
presence offers control of the robot to the remote user. Us-
ing a joystick, a health care giver, friend or relative can
drive the robot around the user’s rooms, and also direct
the robot’s gaze by controlling the head configuration. The
safety of the robot is guaranteed by the robot’s navigation
software, which limits the robot’s velocity so as to avoid
collisions with obstacles. Figure 3 shows the graphical in-
terface, which is run inside a Web browser. The interface
displays the video steam, along with the robot’s sensor read-
ings (sonar only). It offers and easy-to-use joystick interface
for remote robot operation.

3.2 Speech Interface

One of the major goals that has dictated the design process
has been to develop a robot that allows the most natural in-
teraction between the users and the robot. Elderly people
often have difficulties interacting through unfamiliar means,
such as keyboards and computer screens. It is therefore of
great importance that the robot communicates in ways famil-
iar to elderly people. To that end, spoken interaction with the
robot is absolutely essential.

Flo possesses a real-time speech interface. The speech
recognition system is based on CMU’s SPHINX II sys-
tem (Lee 1989; Ravishankar 1996). This system has the
principle virtues of being speaker-independent, and requir-
ing no pre-training by any user. SPHINX is capable of han-
dling vocabularies of thousands of words, but the command-

Figure 3: A picture of the tele-presence interface, at the re-
mote console.

and-control tasks that Flo is predicted to perform do not re-
quire large vocabularies. At the moment, Flo’s vocabulary
consists of approximately one hundred words, enabling it
to understand a variety of questions relating daily living ac-
tivities such as inquiries for the television program and the
weather forecast.

The speech recognition system is controlled by a dialog
manager that generates the appropriate response, based on
the observed utterance from the user. Since much of the
speech around the robot is assumed not to be directed to the
robot, it is necessary to signal the attention of the dialog
manager by beginning each utterance with “Flo”, much as
one might call a nurse over before talking to her. The dialog
manager is currently based on keyword-spotting over the ut-
terance strings, although more sophisticated techniques are
in development using Markov Decision Process algorithms.
Table 1 lists the information domains that the dialog man-
ager is capable of processing.

The speech synthesis system is Festival, from the Uni-
versity of Edinburgh (Black, Taylor, & Caley 1999) system
allows for producing a waveform for any English-language
text, in a variety of voices, both male and female, and a vari-
ety of accents. When Flo speaks, she produces output to the
screen that closely resembles her spoken output, for clarity
and for users who may have hearing loss.

The dialog manager has a connection to a number of ex-
ternal sources of information, such as the World Wide Web,
and thus is able to answer questions on a number of topics.

Domain # of possible responses
Weather 6
TV Schedule (ABC, NBC, CBS) 4
Appointment Calendar 4
MP3 Player 9
Time, Date & Location 3
Miscellaneous 4

Table 1: The domains of the dialog manager.



Figure 4: Left: Map of the environment shown graphically on the right. This map covers a large open area in the Tech Museum
in San Jose, CA. The floor plan was developed by the building’s designers; not every line therein corresponds to an actual
obstacle (and vice versa). As can be seen, the map is accurate.

For example, Flo is able to warn the user of impending bad
weather, and can serve as a rudimentary TV guide. Flo also
can consult an electronic datebook, reminding the user to
take their medication, or that it is time to visit the doctor.
Future plans for Flo’s dialog include allowing the robot to
answer the phone, control the TV and VCR using infrared
transmitters, and to control many of the living areas lights
and appliances using wireless X10 technology.

3.3 Face Finding and Tracking
As mentioned above, Flo’s face is equipped with two color
cameras actuated by two independent servo motors (one per
camera).

Flo uses a neural network approach for face detection, de-
veloped by Henry Rowley and colleagues (Rowley, Baluja,
& Kanade 1998). This algorithm scans the image using a
neural network trained to detect faces in camera images. It
reliably finds facesunder a wide range of viewing and light-
ing conditions. Unfortunately, the face finding algorithm re-
quires approximately four seconds per image on Flo’s on-
board computers. Once a face has been found, a fast color-
based tracking algorithm tracks the face at a rate of 15 fps.
This rate is sufficient to track people’s faces even when they
are moving rapidly. While tracking a person’s face, the cam-
eras are continually adjusted to keep the person centered in
the camera image. Whenever the angle of the cameras sur-
passes a certain threshold (30 degrees), the whole head is ro-
tated so that the cameras (eyes) can move back to its canon-
ical position.

The ability to find and track faces is important for several
reasons. It enables to direct the robot’s sensors (in particu-
lar, its microphone and its cameras) into the direction of the

person. This is important for the speech interface, whose
recognitionaccuracy depends crucially on the strength of
the speech signal. While the typical user of speech tech-
nology has no difficulties speaking into a microphone at the
appropriate distance, cognitive impairment and technology
barriers often make it difficult for elderly people to speak
into microphones. Thus, the ability to direct the microphone
automatically is important.

The ability to track faces is also important for the tele-
presence interface, specifically when interacting with people
that move (or through a moving robot). The current joy-stick
interface does not enable the user tosimultaneouslycontrol
the robot motion and the camera direction; in fact, the cogni-
tive load of controlling these devices simultaneously is prob-
ably too high for health-case professionals without excessive
training. Thus, the ability to track the face is essential for
being able to interact with a person while the robot is in mo-
tion.

Finally, the current face tracking mechanism gives people
a feeling of awareness. To an observer whose face is tracked
visually, the coordinated motion of “eyes” and the “neck”
resembles that of a person. The emotional ramifications are
important, since one of our goals is to understand to which
extent a robot can become a “social” companion for elderly
people.

3.4 Navigation

Flo inherits its navigation system from a series of mobile
robots, previously developed the Robot Learning Laborato-
ries at CMU and the University of Bonn, Germany. These
include the tour-guide robots Minerva (Thrunet al. 1999)



and Rhino (Burgardet al. 1999), which successfully exhib-
ited reliable navigation through crowds in unmodified pub-
lic places (e.g., museums). The description of the navigation
system is available elsewhere; thus, we will not describe it
here in any depth.

Functionally, the navigation system enables the robot to
navigate safely to arbitrary target locations in indoor envi-
ronments. It does this by first learning a map of the envi-
ronment, which is represented through a 2D occupancy grid
map (Elfes 1989) (see (Thrun, Burgard, & Fox 1999) for a
recent extension to 3D building models). Figure 4 shows a
learned map of a large-scale indoor environment (left dia-
gram). This specific map stems from a museum in San Jose.
On the right side, an architectural drawing of the building
is shown for comparison. Maps can be augmented by hand
to attach symbolic names to specific places, and to constrain
the motion in regions that might cause hazard to the robot or
the person (such as: open staircases that the robot currently
cannot detect through its sensors). Mapping environments
of the size shown here takes in the order of 15 minutes; all
software runs in real-time. The ability to learnaccurate maps
in real-time makes it extremely easy to “install” a robot in a
new home. Homes do not have to be modified in any way to
facilitate robot navigation.

Once a map has been acquired, it enables the robot to
maintain an accurate sense of its location inx-y space, along
with its heading direction�. This enables the robot to move
to arbitrary target location, and to direct its camera towards
items of interest (e.g., stove, the bathroom door). By differ-
encing sensor readings and the learned map, the robot can
detect changes in the environment, and in particularly the
location of people. The ability to find people is essential for
the envisioned care scenario in multiple ways: It facilitates
the interaction with the person, for which knowledge of the
location of a person is essential. It also makes it possible to
analyze people’s behavior to detect abnormal situations that
require the attention of a care-giver (e.g., a person fell and is
unable to get up by himself), and to systematically analyze
peoples daily routines. The latter ability to gather data on
people’s behavior is important. Currently, health care pro-
fessionals often lack critical data to assess the health status
and potential risks for independently living elderly people.
For example, people that suffer from low blood pressure are
often advised to pause and catch breath after strenuous ac-
tivities such as raising from a chair; however, whether or not
a person adheres to these rules is typically unknown to the
health care professional. Knowledge about such could be
essential to improve the quality of life and risk assessment
for elderly people.

4 Current Project Status
The first hardware prototype shown in Figure 1 has been de-
veloped and evaluated. The purpose of this prototype was to
establish an “existence proof” to our project partners from
the University of Pittsburgh’s School of Nursing and CMU’s
Design Department, and to obtain their feedback on the de-
sign of robots for nursing. A secondary goal was to integrate
the software described above into a running system. While

User: Flo, hello.
Flo: Hello. What can I do for you.
User: Flo, what’s the weather?
Flo: Do you mean the today’s weather, tomorrow’s

weather, or the current weather?
User: Flo, the current weather.
Flo: It is currently raining with a temperature of

54 degrees.
User: Flo, thanks.
User: Flo, what’s on NBC today?
Flo: NBC is currently airing the Today Show.
User: Flo, good-bye.
Flo: Good-bye.

Table 2: Example dialogue Flo’s texts are also displayed on
the screen. When answering the question of what’s on TV,
the robot displays the program for the next hours.

the robot has not yet been tested with elderly people, feed-
back by our partners has identify a range of opportunities for
improvement.

We also have integrated the software components de-
scribed above using TCX (Fedor 1993) for inter-process
communication. Table 2 shows a “typical” dialogue between
the user and the robot. To answer the user’s questions, Flo
queries the NBC’s and CNN’s web sites for TV and weather
information. Since phrases must begin with the word “Flo,”
Flo almost never responds to language tokens not directed
at the robot. The current repertoire is sufficiently limited to
guarantee high recognitionaccuracy, even if speakers devi-
ate from the pre-programmed syntax. However, while our
tests have included non-native speakers, no actual experi-
ments with elderly have been conducted.

Figure 2 shows a person interacting with the robot in one
of CMU’s corridor. In our own experiments tele-operating
the robot through the hallways, we found it extremely easy
to navigate the robot and engage it in interactions with peo-
ple. However, no experiments with health care professionals
have been conducted.

5 User Feedback
Flo’s “user interface” was recently evaluated in a systematic
study involving 10 individuals (robotics graduate students).
The students were chosen so that their prior exposure to this
project was minimal. They were asked to communicate with
the dialog manager without any instruction, although they
were informed before the experiment began what were the
general areas of information that Flo contained. Although
the speech recognition system was running, the dialog man-
ager also contained a hidden human operator in a “wizard-
of-oz” scenario, in case of dramatic failure of the speech
recognition system. This precaution was in general not nec-
essary.

The subjects were able to extract useful information, al-
though a number of subjects reported uncertainty as to when
the robot was “thinking” (e.g., retrieving information from
the web), as opposed to merely waiting to be addressed, indi-



Speech Recognition
17/172 (9.9%) exact sentence matches
593/1182 (50.2%) word recognition rate
Dialog manager
85/172 (49.4%) correct actions
41/172 (23.8%) recognized wrong request
46/172 (26.7%) performed best-effort action

Table 3: Results of dialog management on user samples, us-
ing basic corpus.

cating that more subtle forms of feedback need to be added.
Furthermore, some of the users addressed the robot in unex-
pected ways, indicating a need for a richer vocabulary and
dialog manager. Certain simple functionality also needs to
be added, such as asking the robot to repeat itself.

We also performed quantitative analysis of the speech
recognition and dialog management systems, over the sam-
ple dialogs acquired during the user testing. These results
are summarized in Table 3. The word recognition rate was
approximately 50%, largely because the vocabulary of the
system was not large enough. The dialog manager perfor-
mance was approximately the same, performing the correct
action 50% of the time. Of the 87 errors, about half were as
a result of incorrect recognition, and about half of the errors
were a result of the users making a request that the dialog
manager could not fill (i.e., asking for information the dia-
log manager did not have). In these cases, the dialog man-
ager performed a best-effort action to fill the request (i.e, re-
turning the information that best matched the request). The
nature of the keyword spotting dialog management is that it
is difficult to recognize when a request cannot be filled, of-
ten because the request lies outside the domains of expertise
(and hence the outside the vocabulary) of the system.

Further analysis showed the effects of superior speech
recognition. In a second experiment, the text of all the
speech samples was compiled and used to build a new
speech model with a larger corpus, with approximately twice
the vocabulary. The speech samples were then re-processed
by the speech recognition system and dialog manager off-
line; the results are summarized in Table 4. The word recog-
nition rate increased to 83.7%, however, the dialog manager
performance remained at about 50%.

Most importantly, the increase in the speech recognition
performance resulted in a dramatic decrease in actions that
did not satisfy the user’s request. In the majority of cases
in both analyses, such incorrect recognition resulted in inap-
propriate responses. This was a source of substantial annoy-
ance to the users, and therefore it is re-assuring that the level
of usability of the system can be boosted simply by enlarging
the corpus. It is worth noting that such improvements will
only take the system so far, as indicated by the relatively mi-
nor increase in the overall system performance. The dialog
manager clearly needs to be able to handle a wider range of
requests than was originally anticipated, and also (perhaps
most importantly) the dialog manager has to be able to rec-
ognize when it cannot fulfill a request. These two require-

Speech Recognition
83/172 (48.3%) exact sentence matches
989/1182 (83.7%) word recognition rate
Dialog manager
91/172 (52.9%) correct actions
69/172 (40.1%) recognized wrong request
12/172 (6.9%) performed best-effort action

Table 4: Using the revised corpus, results of dialog manage-
ment on user samples.

ments are driving further development of the dialog man-
ager.

6 Current and Future Research
Based in the initial feedback from our project partners and
our first user study, we have begun developing a second, im-
proved robot platform. In particular, the next generation
will be equipped with a removable basket at its front. We
also are integrating a handle that provides support for peo-
ple with stability problems. This handle isnot meant as a
walking aid; instead, it will be equipped with a touch sen-
sor that will stop the robot as soon as a person holds onto
it. Finally, we plan to add an additional rotational degree
of freedom to increase the robot’s maneuverability in tight
spaces. This robot is currently being developed in collabo-
ration with CMU’s Design Department.

In collaboration with the School of Nursing of the Uni-
versity of Pittsburgh, we are currently developing a detailed
“script,” laying out in detail modes of interaction between
nursing robots and people. Finally, we are at the verge of
integrating the University of Pittsburgh’s system for intel-
ligent scheduling and planning, with the goal of develop-
ing an intelligent aid that intelligent management support of
daily living activities; in particular intelligent reminding and
scheduling.

7 Discussion
This paper reported the initial design and results of a mo-
bile robot aimed at the elderly population. Recognizing the
importance of providing care for elderly, we are currently
developing a mobile robot that will provide a range of ser-
vices to non-institutionalized elderly people.

A secondary goal of this paper is to make robotics re-
searchers aware of a unique opportunity to develop personal
service robots with high societal impact. We firmly believe
that our current research only scratches the surface of this
enormous challenge: Using personalized robotic technology
to assist elderly and chronically ill people.
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